Multiparty Computation Combiners

Mingrui Zou

Master of Science
Cyber Security, Privacy and Trust
School of Informatics
University of Edinburgh
2024

Abstract

Combiners are a fundamental cryptographic tool that integrate multiple protocols
to maintain security, even when some components may fail. This approach is particu-
larly valuable in scenarios where the exact security of individual protocols cannot be
guaranteed. This dissertation extends the concept of combiners to the realm of Secure
Multi-Party Computation (MPC), an area crucial for scenarios where multiple parties
jointly compute a function over their inputs while preserving the privacy of those inputs.
MPC combiners offer a way to ensure that the overall system remains secure even if
certain underlying protocols are compromised, thus providing an additional layer of
robustness in cryptographic applications.

In this work, we provide the first formal definition of MPC combiners and focus on
their construction within the two-party semi-honest model. Specifically, we propose
and analyze a 1-out-of-2 MPC combiner, demonstrating its capability to ensure security
for at least one party. Additionally, we extend our approach to a 2-out-of-3 MPC
combiner, identifying potential flaws and subsequently proposing a less efficient but
secure alternative construction, demonstrating the feasibility of achieving security even
in more complex settings. Our findings suggest that innovative approaches may be
required to overcome the inherent difficulties in achieving comprehensive security in

MPC combiners.

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It
did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Mingrui Zou)

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Dr. Michele Ciampi,
for his invaluable guidance, support, and encouragement throughout the course of this
research. His expertise and insights have been instrumental in the completion of this
dissertation.

I also wish to extend my heartfelt thanks to my parents and grandparents for their

unwavering support and belief in my academic journey. Their love and encouragement

have been my constant source of motivation.

Table of Contents

Introduction

1.1 Contributions e
1.2 RelatedWork e
1.3 Paper Organization
Background

2.1 Secure Multi-Party Computation MPC)
2.2 Semi-Honest Adversaries
2.3 Simulation-based Security 0.

Security Definitions and Notations

3.1 NoOtation v v v e e e e e e e e e e e
3.2 Definitions for Security Lo .
3.3 Black-box MPC Combiners

1-out-of-2 MPC Combiner

4.1 ProposedProtocol
4.2 Theorems and Proofs
421 Theorem 1
422 Theorem?2 e
423 Theorem3 e
424 Theorem4
425 InsecurityCases i
4.3 Security Evaluation and Discussion

2-out-of-3 MPC Combiner
5.1 Proposed Protocol
5.2 Security Analysis e e

W W N =

AN O L W

>

5.3 A Secure 2-out-of-3 MPC Combiner
6 Conclusions

Bibliography

Chapter 1
Introduction

In recent years, Secure Multi-Party Computation (MPC) [2, 3, 10] has emerged as a
critical area of cryptography, allowing multiple mutually suspicious parties to jointly
compute a function of their local inputs without revealing any additional information
beyond the output of the function to any subset of corrupted parties. This capability
is indispensable in various fields, including cloud computing, artificial intelligence,
and blockchain technologies, where secure data handling is paramount. MPC allows
for private data analysis in cloud computing, facilitates collaborative machine learning
in Al without compromising sensitive training data, and enhances privacy-preserving
mechanisms in blockchain transactions. However, the security of these protocols often
hinges on underlying cryptographic assumptions, such as the hardness of specific
mathematical problems like factoring large integers or computing discrete logarithms.
Additionally, assumptions like the availability of a Common Reference String (CRS),
generated by a trusted party, are critical. If these assumptions fail, whether due to
advances in computational power, such as the advent of quantum computing [!], or the
dishonesty of the trusted entity, existing MPC protocols could become vulnerable.

To mitigate these risks, the concept of Robust Combiner has been introduced in
cryptographic research [0, 8]. Combiner is a method that combines multiple crypto-
graphic protocols in such a way that the overall system remains secure as long as at
least a certain number of the underlying protocols is secure. This approach follows the
principle of ”not putting all your eggs in one basket” and is particularly appealing in
scenarios where the exact security of individual protocols cannot be guaranteed. For
instance, combiners are particularly useful in scenarios where individual cryptographic
primitives may become vulnerable over time due to advances in computational methods,

yet the system remains secure by relying on the strength of the combined protocol. By

Chapter 1. Introduction 2

integrating multiple cryptographic protocols into a single framework through combiners,
the security of the computation can be preserved even if some of the candidate protocols
fail.

Despite the significance of combiners in other areas of cryptography, the concept
of combiners specifically designed for MPC protocols has not been a focus of study in
the existing academic research. This dissertation addresses this gap by providing the
first formal definition of MPC combiners, proposing new black-box constructions that
ensure a certain level of security, and offering rigorous analysis through theorems and
proofs. Additionally, we discuss these results in the context of established cryptographic

principles, linking our findings to broader theoretical frameworks.

1.1 Contributions
This dissertation makes several key contributions:

1. Formal Definition of MPC Combiners: We introduce the concept of MPC
combiners, providing a rigorous definition that captures the security guarantees
required in the presence of potentially faulty protocols. This is the first such

definition in the cryptographic literature.

2. 1-out-of-2 MPC Combiner: We propose and analyze a 1-out-of-2 MPC combiner
designed to securely compute a function for two parties using two candidate MPC
protocols, under the assumption that at least one of these protocols is secure. The
security of the proposed combiner is rigorously examined through a series of
theorems and proofs. While our findings confirm the combiner’s ability to ensure
security for one party, we also explore the inherent limitations in achieving full
two-party security. These results align with existing cryptographic principles,

highlighting the challenges and constraints in designing MPC combiners.

3. 2-out-of-3 MPC Combiner: Building on the 1-out-of-2 combiner, we explore
the construction of a 2-out-of-3 MPC combiner. This combiner aims to provide
stronger security guarantees by requiring that at least two out of three candidate
protocols are secure. We discuss the challenges and potential vulnerabilities of
this approach and propose an alternative approach construction that, although less

efficient, successfully ensures security.

Chapter 1. Introduction 3

1.2 Related Work

Robust combiners have been widely studied in cryptography, with significant con-
tributions from Herzberg [¢], who focused on developing efficient robust combiners
for various cryptographic primitives. His research highlights the use of parallel and
cascade constructions to create combiners that not only enhance efficiency but also
ensure robustness. Herzberg’s work includes the development of combiners for one-way
functions (OWFs), digital signatures, message authentication codes (MACs), and other
key cryptographic primitives.

While robust combiners have been successfully applied in several cryptographic
areas, their application to secure multiparty computation (MPC) protocols remains
less explored. Notably, the literature highlights the inherent challenges in constructing
I-out-of-2 Oblivious Transfer (OT) combiners, demonstrating the impossibility of
such constructions under transparent black-box conditions [6]. This impossibility
result, which will be further discussed in the context of the 1-out-of-2 MPC combiner
presented in Section 4.3, underscores the complexity of extending robust combiners to

MPC protocols and motivates the need for novel approaches in this domain.

1.3 Paper Organization
The dissertation is structured as follows:

* Chapter 2 provides the necessary background on Secure Multi-Party Computa-
tion, including an overview of the semi-honest adversarial model and simulation-

based security.

» Chapter 3 introduces the formal security definitions and notations used through-

out the dissertation, as well as the definition of black-box MPC combiners.

* Chapter 4 details the construction and analysis of the 1-out-of-2 MPC combiner,
including theorems and proofs, as well as insecurity cases and a comprehensive

evaluation and discussion of the results.

* Chapter 5 extends the discussion to the 2-out-of-3 MPC combiner, offering
a detailed analysis of its design, security challenges, and an alternative secure

construction.

Chapter 1. Introduction 4

* Chapter 6 concludes the dissertation with a summary of the findings and a

discussion of potential future research directions.

Chapter 2

Background

2.1 Secure Multi-Party Computation (MPC)

Secure Multi-Party Computation (MPC) [7] is a cryptographic framework that enables
multiple parties to jointly compute a function over their inputs while maintaining the
privacy of those inputs. The primary objective of MPC is to ensure that even in the
presence of dishonest parties, the computation is executed correctly and no additional
information about the inputs is revealed beyond what can be inferred from the output.

MPC protocols are typically designed to be resilient against various types of adver-
saries, ranging from semi-honest to fully malicious. In a common scenario, two parties,
Py and P, wish to compute a function f(x;,x;), where x| and x; are the private inputs
of P; and P», respectively. The security of the protocol ensures that the parties learn
nothing more than the output of the function, and the computation is performed as if a
trusted third party were responsible for computing the function and then sharing the
result with the parties.

In this paper, we will mainly focus on the semi-honest model. In the semi-honest
model, also known as the honest-but-curious model, parties are assumed to follow the
protocol correctly but may try to learn additional information by analyzing the messages
they receive during the protocol’s execution. Despite this, a secure MPC protocol
guarantees that no information other than the intended output can be inferred from the

execution of the protocol.

Chapter 2. Background 6

2.2 Semi-Honest Adversaries

A semi-honest adversary [7] is a type of adversary in the context of secure computation
protocols. This model assumes that while the adversary adheres to the prescribed
protocol correctly, it may attempt to gain as much information as possible by analyzing
the data it receives during the execution of the protocol.

The semi-honest model is less stringent than the malicious model, where adversaries
can deviate from the protocol in any arbitrary way. However, protocols that are secure
against semi-honest adversaries are often more efficient and simpler to construct.

In the context of MPC, security against semi-honest adversaries is typically defined
using a simulation-based approach. The idea is to demonstrate that whatever a semi-
honest adversary can learn during the real execution of the protocol, it could also
learn by participating in an idealized version of the protocol, where the computation
is performed by a trusted party. If the adversary cannot distinguish between these two
scenarios, the protocol is considered secure against semi-honest adversaries.

This model is particularly relevant when designing and analyzing protocols, as it
allows for the construction of efficient solutions while providing a reasonable level of
security. The results from such protocols can often be extended or adapted to handle

more complex settings or stronger adversarial models.

2.3 Simulation-based Security

Simulation-based security [9] is a rigorous and widely used framework in cryptography
for defining and proving the security of cryptographic protocols, including Secure
Multi-Party Computation (MPC). The core idea behind simulation-based security is to
compare the real execution of a protocol with an ideal execution, where the latter is
assumed to be completely secure. The protocol is considered secure if an adversary
cannot distinguish between these two executions.

In the ideal model, a trusted third party is assumed to exist. This third party receives
the inputs from all participants, computes the function on those inputs, and then returns
the correct outputs to the participants without revealing any additional information.
Furthermore, it is assumed that the communication between the participants and the
trusted third party is perfectly secure, meaning that all messages are confidential and
protected from interception or tampering by adversaries. In contrast, the real model

involves the actual protocol where no such trusted party exists, and the computation

Chapter 2. Background 7

is carried out by the participants themselves, without any assumptions about secure
communication beyond what the protocol itself ensures.

To establish security, a ’simulator” is constructed in the simulation-based framework.
The simulator aims to produce a view of the protocol’s execution that is indistinguishable
from what the adversary would see in the real execution. The key point is that the
simulator operates without access to the honest parties’ inputs, relying only on the
output and any public information. If the simulator can convincingly replicate the
adversary’s view of the protocol, then the protocol is deemed secure.

Simulation-based security is particularly powerful because it offers a clear and
strong guarantee: anything that an adversary can learn from interacting with the real
protocol could have been learned in the ideal setting as well. This ensures that the
protocol does not leak any unintended information, beyond what is inherent in the
function being computed.

This approach to security is especially important in the context of MPC, where
multiple parties must collaborate to compute a function securely despite potential
adversaries. By proving that a protocol satisfies simulation-based security, one can
ensure that even under adversarial conditions, the protocol behaves as though it were
running in an ideal, perfectly secure environment.

In summary, simulation-based security provides a formal and robust framework
for analyzing and proving the security of cryptographic protocols. By comparing the
real execution of a protocol with an idealized version, it ensures that no additional
information is leaked to adversaries, thus maintaining the confidentiality and integrity

of the computation.

Chapter 3

Security Definitions and Notations

3.1 Notation

In this paper, we mainly focus on round-based secure MPC protocols. Without loss
of generality, we assume that any protocol I1; runs for K rounds. Rather than viewing
a protocol I1; as an n-tuple of interactive Turing machines, it is convenient to view
each Turing machine as a sequence of multiple algorithms: frst-msg, nxt-msg, and
output [3]. Specifically, each protocol I1; can be defined as a collection of algorithms

{frst—msg?i, nxt—msg];’ni, output?"}jqn]kd]{], where:
* frst-msg computes the first messages that each party sends to its peers.

* nxt-msg computes the messages for subsequent rounds.

* output computes the final output of each party.

[n]: This denotes the set of integers {1,2,...,n}, where n represents the total

number of parties in the protocol.

Each protocol IT; is capable of computing any valid function. The syntax and the

specific functionalities of these algorithms are defined as follows:

. frst—msg?i (xj;7rj): This algorithm computes P;’s first message to its peers,

where I1; denotes the protocol used for the MPC computation.

— Inputs:

* x;j: The private input of party P;.

Chapter 3. Security Definitions and Notations 9

* rj: The internal randomness generated by party P; at the start of the

protocol.

— Outputs:

* msg}f}: The message to be sent from P; to each peer P, in the first

round.
* nxt —msgI;-’H" (x;, {msg’lgI}i}le[H] mefi37;): This algorithm computes P;’s (k+1)-th

round messages, where I1; denotes the protocol used for the MPC computation.

— Inputs:
* x;j: The private input of party P;.
* {msg;n_’gf } lcn),melk]* A set of messages received by P; from its peers up
to round k.

* rj: The internal randomness of party P; is refreshed for each round,
meaning that a new random value r; is generated and used as input for
each algorithm in every round.

— Outputs:

* msgl;ill’ni: The message to be sent from P; to each peer P, in the

(k+ 1)-th round.
. output?f (xj, {msg;n;l}i}le[n] sme[k]>7j): This algorithm computes P;’s final output
after K rounds, where I1; denotes the protocol used for the MPC computation.
— Inputs:
* x;j: The private input of party P;.
* {msg;"j}" e melx): A set of messages received by P; from its peers
over K rounds.
* r;: The internal randomness generated by party P;.
— Outputs:

* yj: The final computed output of party P; after K rounds of communi-

cation.

3.2 Definitions for Security

Computational Indistinguishability. A probability ensemble X = {X(a,n)}4c{0,1}* neN

is an infinite sequence of random variables indexed by a € {0,1}* and n € N. In the

Chapter 3. Security Definitions and Notations 10

context of secure computation, the value a will represent the parties’ inputs, and »n will
represent the security parameter. Two probability ensembles X = {X (a,7)}4e (0,11 nen
and Y = {Y(a,n)}4c{0,1}* nen are said to be computationally indistinguishable [9], de-
noted by X =Y, if for every non-uniform polynomial-time algorithm D, there exists a

negligible function u(-) such that for every a € {0,1}* and every n € N,

PA[D(X (a,m)) = 1] - Pr[D(¥ (a,n)) = 1]| < u(n).

Two-Party Computation. A two-party protocol problem is defined by specify-
ing a possibly random process that maps pairs of inputs to pairs of outputs (one
for each party). This process is referred to as a functionality and is denoted by
f:{0,1}* x{0,1}* — {0,1}* x {0,1}*, where f = (f1,f2). For every pair of in-
puts x,y € {0,1}", the output-pair is a random variable (fi(x,y), f2(x,y)) ranging over
pairs of strings. The first party (with input x) wishes to obtain fj(x,y), and the second
party (with input y) wishes to obtain f>(x,y) [7].

Definition of Security. We begin with the following notation [5]:

* Let f = (f1,/f>) be a probabilistic polynomial-time functionality and let IT be a

two-party protocol for computing f.

* The view of the i-th party (i € {1,2}) during an execution of IT on (x,x>) and se-
curity parameter n is denoted by view!!(x1,x2, 1) and equals (w, r;; {ms g;"_’g} le2]me[K])>
where w € {x1,x,} (its input depending on the value of i), r; equals the contents
of the i-th party’s internal random tape, and {ms g;"_’g} 1e2],me|k] Tepresents all the

messages that it received (K is the total round number of the protocol).

 The output of the i-th party during an execution of IT on (xj,x;) and secu-
rity parameter n is denoted by output}](xl,xz,n) and can be computed from
its own view of the execution. We denote the joint output of both parties by

output(x1,x2,n) = (outputl! (x1,x2, 1), outputt (x1,x2,n)).

Definition 1. Let f = (f1, f2) be a functionality. We say that I1 securely computes f in
the presence of static semi-honest adversaries if there exist probabilistic polynomial-

time algorithms S\ and S> such that [7]:
{(S](ln,X1,f1(X1,X2)),f(XhXZ))}xhxz_n é { Vler .XI,XQ,) outputllT(xl,XQ,n))}

{(52(1n7x27f2(x17x2))7f(x17x2))}x1,x2,né{ Vl€W2 xl?xZ?) Outputl;(x17x27n))}

where x1,xp € {0,1}* such that |x;| = |x2|, and n € N.

X1,X2,1

X1,X2,1

Chapter 3. Security Definitions and Notations 11

Definition 2. Let f = (f1, f2) be a functionality. We say that I1 is faulty in the presence
of static semi-honest adversaries if there exist probabilistic polynomial-time algorithms

S1 and/or S> such that:
LS x, f1(xr,%2)), f (615%2)) Yoy 2y 2 {(viewlf(xl,xz,n),outputlf(xl,xz,n))}x17x27n

{(S2(1n7x27f2(-x17x2>)7f(x15x2>)}x1,xz,n 7% {(Viewg<xl’x27n)7Outputlz_[(xl’xz’n))}xl,xz,n

,and n € N.

where x1,x2 € {0,1}* such that |x;| = |x2

Definition 3 (Output Round Correctness for /-Round MPC Protocols). Let I1 be an
{-round secure multiparty computation (MPC) protocol with parties Py, Ps, ..., P,. For
any A,m € N, for any inputs (x1,...,x,) € ({0,1Y")", and for any set of functions
{fr}yem with | fy| = m for all y € [n], it must hold for all i € [n] that [1]:

s if fi=---= fy then
r (output; (X;, {msg| i, MSLy_yir. - MSGY_js- -y MSy_yi b 1) 7 F(X150 o n) | =

I 1 1 J J
where output; (xi,{msglﬁi,...,msgn%l-,...,msg1_>i,...,msgn_>i},r,~) denotes the

final output algorithm of party P; at the end of the protocol.

* if there exists O, € [n] such that fo # fp, then
Pr (output;' (xi, {msgi ;- -, MSgp_jy- - MSG) s msg .} 1) 7£J_] =0

where 1 denotes an error output.

3.3 Black-box MPC Combiners

In this paper, we introduce the concept of a black-box MPC combiner. A black-box
combiner is a method where the internal workings of the protocols being combined are
not analyzed or modified; instead, they are treated as black boxes, and their outputs are
combined to achieve security. In our setting, we can directly call the algorithms of the
candidate protocols as subroutines without needing to understand or alter their internal

processes.

Definition 4 (7 -out-of-N MPC Combiner). A T-out-of-N MPC combiner is a construc-
tion that takes as input N candidate MPC protocols and produces a new protocol I1

with the following properties [0]:

Chapter 3. Security Definitions and Notations 12

1. If at least T out of the N candidate protocols are secure, then the resulting

protocol I1 is secure.
2. The combiner operates without knowledge of which candidate protocols are faulty.

Definition 5 (Black-Box MPC Combiner). A T-out-of-N MPC Combiner is said to be
a black-box combiner if the following conditions hold [6]:

Black-box implementation: The combiner constructs the new MPC protocol by access-

ing the N candidate protocols via oracle calls to their implementation algorithms.

The concept of black-box combiners is significant in cryptographic constructions
because it allows for the secure combination of multiple protocols without the need to
understand or modify the internal details of each protocol. This black-box approach
is particularly useful when dealing with protocols of varying security assumptions or
when the internal workings of the protocols are complex or unknown.

In summary, this chapter has established the foundational notations and definitions
essential for understanding and analyzing secure MPC protocols, as well as formally
defining black-box MPC combiners. Building on this foundation, the next chapter will

propose a 1-out-of-2 MPC combiner and analyze its security properties.

Chapter 4

1-out-of-2 MPC Combiner

We consider the problem of securely computing a function f(xy,x;) for two parties P
and P», using two MPC protocols, IT; and I15, at least one of which is secure. Our goal
is to ensure security by combining these protocols using a black-box combiner.

In this chapter, we will explore the construction and analysis of a 1-out-of-2 MPC
combiner. We will present the proposed protocol, analyze its security through formal
theorems, and discuss its limitations within the context of established cryptographic

principles.

4.1 Proposed Protocol

Consider two MPC protocols I1; and I, where at least one of them is secure. Both
protocols are assumed to have output round correctness. Our objective is to securely
compute the function f(x;,x2) by combining these two protocols. Assume that pro-
tocol IT; computes the function f(x1,x;), while protocol IT, computes the function

g(xp, {ms g?flzl }jel1],me[k)» T2, k), where the function g returns the following function:

k11 Ro :
nxt-msgy” ' (2, {msg}" } el mefis 2)

We propose a combined protocol I1 to compute the function f as follows, assumes that

P, speaks first:

* In the first round of IT, P; calls the frst-ms g?' (x1;71) function using the protocol

IT; with input x| and internal randomness ry:

1,11 11
msg, 5 < frst-msg; " (x1;77)

13

Chapter 4. 1-out-of-2 MPC Combiner 14

Instead of sending it to P>, P; initiates another MPC with P,, using protocol I,

to compute the function

LI
g(x2,{msg; 55 }je), r2, 1)

The input of P is msgigé, and the inputs for P, are x, and its internal randomness

ry. P; and P, executes all the round of I1; and only P; gets the output message

2,11
5921

* In the subsequent rounds (3 < k < K), P calls the function
nxt-msgt T (x, {msgj'ﬁnl1 } je2)mefk—1)371) using protocol IT;;
msglfilé — nxt—msg]I_LHl (x1, {mngﬂl }je[z},me[k—l}”’l)
Then, Pj initiates another MPC with P> using protocol I, to compute the function
g(x2, {msgl;:nzl }ien]meli]s r2,k)-

The input for P; is {msc_z;?fz1 }jelt)mel » and the inputs for P, are x; and its
internal randomness r,. P; and P, executes all the round of I, and only P; gets

the output message

k+1,ITy
msg, .| -

* In the final round, P; computes its output using the output function:
I m,I1 .
Y1 < output, '(X1,{m39j_>11 }je[Z],me[K]J’l)
Then, Pj initiates another MPC with P> using protocol I, to compute the function
I3 m,I1 .
output, ' (x2, {mng_>Zl }je[z],me[lq,rz)-

The input for P; is {msg’;gnzl} jep,melk] » and the inputs for P, are x; and its
internal randomness ;. Py and P, executes all the round of I, and P, gets the

message

y2.

4.2 Theorems and Proofs

4.21 Theorem 1

Theorem 1. Given two MPC protocols 1y and o, where 11} is secure and 11, is faulty,

if Py is honest and P, is corrupted, then the combined protocol 11 securely computes

Chapter 4. 1-out-of-2 MPC Combiner 15

the function f(x1,x2) for Py. Specifically, the view of P, in the real execution of Il is

computationally indistinguishable from the view generated by the simulator S:

{01, x2, f2(x1,%2)), £ (X1,%2)) b2 1y = {(viewgl(xl,xg,n),outputg(xl,xz,n))}xmw

Proof. We prove the security of the combined protocol IT under the assumption that I'T;
is secure and II, is faulty. Suppose P; is honest and P, is corrupted. We will define
simulators for I} and IT and show that any adversary A that can distinguish the real and
simulated views of P, in IT can be used to construct an adversary A’ that can distinguish

the real and simulated views of P, in I1j, thus contradicting the security of IT;.

Simulator for I,

Since I1; is secure, there exists a simulator Spy, that can simulate the view of P, such
that the simulated view is indistinguishable from the real view. The simulator Sty,
works by inputting an arbitrary value of length n (1”) instead of x; while keeping x,

unchanged:

{(Sm, (1", 32, A (x1,%2)), f (01,22 by = {(View? (x1,%2,n), outputy” (x17x27n))}

X1,X2,1
Simulator S for I

The simulator § for the combined protocol IT invokes the simulator Spj, to generate
the entire view that the corrupted party P, would observe in the simulation of 1. The

simulated messages and outputs generated by Sy, include:
1,1
* msg,’,, for the first round,
. msg]fglz for subsequent rounds, where 1 < k < K,
* The final output y;.

Here, K represents the total number of rounds in protocol IT;. These messages, collec-
tively produced by the simulator Sy, , are then used in the subsequent simulation steps

for protocol I1. The simulation for IT proceeds as follows:

* In the first round of II, Py uses the message generated by Sty :

1,1,
msg_o

Chapter 4. 1-out-of-2 MPC Combiner 16

Instead of sending it to P>, P; initiates another MPC with P,, using protocol I,

to compute the function

1,1
g(x27 {m5g1_>i 1y 12, 1)
The input of P is msg%fﬁ, and the inputs for P, are x, and its internal randomness
r>. Py and P, execute all the rounds of Il and P; gets the message

2,11
5921

* In the subsequent rounds (3 < k < K), P uses the message generated by Sy, :

kI,
Msg12
Instead of sending it to P>, P; initiates another MPC with P, using protocol I,

to compute the function

q
8(x2, {msgi™37 bmepy» 72,k)-

The input of Py is ms glf{{‘z, and the inputs for P, are x, and its internal randomness

r2. Py and P, execute all the rounds of Il and P; gets the message

k1,1
MS92—1 -

* In the final round, P; uses the final output y; generated by Syy,. Then, P initiates

another MPC with P using protocol I, to compute the function

I 1 .
output, ' (x2, {mSgTﬁzl }ieplmelk)iT2)-

The input for P; is {msg;.”’jzl} jepmelk] » and the inputs for P, are x; and its
internal randomness ;. Py and P, execute all the rounds of I, and P> gets the

output y, for Ps.

Reduction Proof

Assume there exists an adversary A that can distinguish the real and simulated views of
P, in the combined protocol IT. We construct an adversary A’ that can distinguish the
real and simulated views of P, in I1;, thereby contradicting the security of IT;. We will
demonstrate this by comparing the distributions generated by the real protocol and the

simulator, and how these relate to the distributions in IT;.

Chapter 4. 1-out-of-2 MPC Combiner 17

1. Distributions for A in Protocol IT:

* Real View: The real view of P> in IT:

Realy (x1,x2,n) = (xz, ra, {msg{" 1y, clK)> {msg}" 5™ msgh 2Ry, ,kze[l(]>
* Simulated View: The simulated view of P; in I1 generated by S:
Simg(l",xz,n) = (xZ, r, {msq’f;’? Helk)s {mSQTfé’Hzamsggff’nz}kl J<2€[K]>
2. Distributions for A’ in Protocol I1;:
¢ Real View: The real view of P> in I1;:
Real)' (x],x2,n) = (Xz, ra, {msg) bee k) {ms g} }ke[K]>
 Simulated View: The simulated view of P in I1; generated by Sp,:
Simy' (1",x2,n) = (xza r2, {msqy A bee i), {msgy o} }ke[K]>

Given that S calls Spy, as a subroutine, the simulated messages in S depend on the simu-
lated messages in Sty,. We assume A can distinguish RealgI (x1,x2,n) from SimIZI(1" xp,n).

This implies:

{(Realg(xl,xz,n),outputg(xl,xz,n)) }Xl,xzﬁ’l ?Eé {(Simg(lnvx%n)vf(xth)) }x17xz,n

We can argue that the distribution of Reallz11 (x1,x2,n) and its output is equal to the
distribution of Real} (x1,x,,7) and its output, because the internal messages from IT,

do not affect the distribution:

{ (Realﬁh (x1,x2,1), outputy! (xy ,X27n)) } = {(Real} (x1,x2,n), outputy (x1,x2,n)) }

X1,%2,1 A2

Similarly, the distribution of Simlz11 (1",x2,n) and its output is equal to the distribution

of Siml!(1”,x5,n) and its output:

{ (SimlzIl (1",x2,n),f(x1,xz)) }

Therefore, we have

{ (Realg‘ (xl,xz,n),output?‘ (xl,xz,n)) } ;Cé { <Sim12Tl (ln,xz,n),f(xl,xz)) }

If A can distinguish the real and simulated views of P, in II, then A’ can use A to

= {(Simg(ln,xz,n)>f<x1>x2)) }xl,xz,n

xl 7x27n

'xl 7'x27n ‘xl 7'x27n

distinguish the views in I1;, leading to a contradiction because I1; is assumed to be
secure. Consequently, A cannot exist, and the simulated view for P, in Il must be
indistinguishable from the real view. Thus, the combined protocol IT securely computes

the function f(x;,x;) for P} when Pj is honest and P, is corrupted.
O

18

Chapter 4. 1-out-of-2 MPC Combiner
4.2.2 Theorem 2

Theorem 2. Given two MPC protocols 11} and I1,, where 11 is faulty and I, is secure,

if Py is honest and P, is corrupted, then the combined protocol 11 securely computes

the function f(x1,x2) for Py. Specifically, the view of P, in the real execution of Il is
X1,X2,1

computationally indistinguishable from the view generated by the simulator S:
{(S(1",x2, fa(x1,%2)), f(x1,%2)) } = { (view5 (x1,x2,n), outputy (x1,x2, 1)) }
Proof. We prove the security of the combined protocol IT under the assumption that ITj

is faulty and Il is secure. Suppose Pj is honest and P, is corrupted. We will define

simulators for Il and IT and propose a sequence of hybrid experiments H,, to analyze

the security of the combined protocol I1.

Simulator for I,
corrupted party P> such that the simulated view is indistinguishable from the real view.

Since I, is secure, there exists a simulator Sy, that can simulate the view of the
In the combined protocol, I, is called multiple times to compute the following fuction:

g(x2, {mSGT;Hzl }ien)melk]> 2,k)

The simulator Sp1, works by simulating the inputs for both Py and P in the following

way:
e Input for P;: The simulator inputs arbitrary values as placeholders for the mes-
sages {msg’{’;nzl }melq that would have been generated by IT;. These dummy

inputs have the same length and structure as the real messages, ensuring consis-

tency in the simulation.
* Input for P>: The simulator uses the real input x, and internal randomness r» of

P, as these values are known to the corrupted party.

Il

The simulator Sy, generates the messages and outputs in such a way that they are

computationally indistinguishable from those in the real protocol execution.
m,I1
{mSgl$2l }me[k] X2,

{0 (1" e 328 (s 28 bz, 72, 0) }
{mSgTilzl }me[k] 2,1

. TI I I1 I
{(views ({msof 3 bynege 12,m), outputd ({msof 3 begy 12,m)) §

Chapter 4. 1-out-of-2 MPC Combiner 19

Simulator S for I1

The simulator S for the combined protocol II operates as follows. It uses the real
executions of IT; throughout, and replaces all invocations of I, with the simulator Sy, .
Note that 7| represents a random value chosen by the simulator to simulate P;’s internal

randomness ry:

e First Round:

— Real Execution of I1;: P; computes the first message using the real protocol

IT; with arbitrary input 1"
msgiig — frst—msg?‘ (1";71)

— Simulation of II, with Sty,: The simulator S invokes Sy, with variable k =1
to generate the view and output message in this round. The output message

ms gggf is provided to P;.
* Subsequent Rounds (3 < k < K):

— Real Execution of IIj: For each subsequent round, P; computes the next

message using the real protocol I1;:

k,IT k—1,1T T =

msgl%IZ ¢ nxt-msg, l (1n7 {mSgTall }jG[Z],me[k—l]’ 7‘1)
— Simulation of Il with Spy,: The simulator S invokes Sp, with variable & to
generate the view and output message in each of these rounds. The output

k+111; - .
message msgzil’ ? is provided to P;.

¢ Final Round:

— Real Execution of I1j: P; computes its output using the real protocol I1;:

I 1 .
y1 < output; l(ln, {msg?ﬁf}je[z},me[l{}”’l)

— Simulation of I, with Sty,: The simulator S invokes Sy, with variable k = K
to generate the final view and output message. The final output message y,

is provided to P;.

Chapter 4. 1-out-of-2 MPC Combiner 20

Proof

We propose a sequence of hybrid experiments H,, to analyze the security of the combined
protocol I1. The experiments transition from the real execution of the protocol to the

full simulation performed by the simulator S. The sequence is described as follows:

* Hp: The experiment Hj represents the real execution of the protocol I, where both
IT; and I1; are executed according to their specifications without any simulation.

Specifically:

Hy : Real execution of I1; and I, for all rounds.

* Hj: The experiment H; modifies the real execution by simulating the first invoca-
tion of I, using the simulator St,. The remaining invocations of I1; are executed

according to the real protocol. Specifically:

H; : Simulate the first round of I, using Sty,, real execution for subsequent rounds.

* H,: The experiment H, extends this approach by simulating the first n invocations
of Il using St1,, while the remaining invocations of I, are executed according

to the real protocol. Specifically:

H,, : Simulate the first n rounds of Il using Sty,, real execution for subsequent rounds.

* Hg: The final experiment Hx represents the scenario where all invocations of I
are simulated using Sty,. This corresponds to the full simulation as performed by

the simulator S for the protocol I1. Specifically:

Hg : Simulate all K rounds of I, using Sti,, corresponding to the simulator S.

We want to prove that H; = H; 1 for all 0 <i < K, and therefore H = Hyg. To show that
H; is computationally indistinguishable from H, 1, we consider the difference between

the two experiments:

* H;: The first i rounds of I, are simulated using St1,, and the remaining K —i

rounds are executed according to the real protocol IT;.

* H;: The first i + 1 rounds of I, are simulated using Sty,, while the remaining

K — (i+ 1) rounds are executed according to the real protocol IT;.

Chapter 4. 1-out-of-2 MPC Combiner 21

The only difference between H; and H; | is in the simulation of the (i + 1)-th round
of IT,:

* In H;, the (i + 1)-th round of I, is executed according to the real protocol.

* In H;, the (i+ 1)-th round of I, is simulated using Sy,

Since I is a secure protocol, by the definition of security in the presence of static
semi-honest adversaries, the view of the corrupted party P, when the (i + 1)-th round
of I, is simulated using Sy, is computationally indistinguishable from the view when

it is executed according to the real protocol. Formally, we have:

C

{(Sm, (1", x2, fa(x1,%2)), f(x1,22)) by yn = {(Viewgz(xl,X27n)aOUtPUt£I2(x1,xzan))}

X1,X2,1

Therefore, H; and H;; | are computationally indistinguishable:
Hi=H;,

Given that H; = H; . for all 0 <i < K, by the transitivity of computational indistin-

guishability, we have:

Thus, we conclude that:
Hy = Hy

Since Hy is the real execution of the protocol and Hg is the full simulation by the
simulator S, we conclude that the view of the corrupted party in the real execution is
computationally indistinguishable from the view generated by the simulator. Therefore,
the combined protocol IT securely computes the function f(xj,x;) for P; when IT; is
honest and I, are corrupted.

O]

4.2.3 Theorem 3

Theorem 3. Given two secure MPC protocols 11| and 11y, if P| is honest and P, is
corrupted, then the combined protocol I1 securely computes the function f(xy,x;) for
Py.

Chapter 4. 1-out-of-2 MPC Combiner 22

Proof. Since Theorem 1 establishes security for P; when I is secure and I1; is faulty,
and Theorem 2 establishes security for P; when Il is secure and II; is faulty, the
current theorem, which considers the case where both I} and Il are secure, follows
as a direct consequence. Thus, we conclude that the combined protocol I securely
computes the function f(x;,x;) for P} when Pj is honest and P, is corrupted, and both
I1; and I, are secure.

]

4.2.4 Theorem4

Theorem 4. Given two secure MPC protocols 11| and 11y, if Py is corrupted and P, is
honest, then the combined protocol I1 securely computes the function f(x1,x;) for Ps.
Specifically, the view of P in the real execution of I1 is computationally indistinguishable

from the view generated by the simulator S:

{(S(ln7x17f1 (x17x2))7f(x17x2))}x17x27n = {(Viewll_l(xlvx%n)?OUtPUt{IOCl7x27n))}xl7x27n

Proof. We prove the security of the combined protocol IT under the assumption that
both IT; and I, are secure. Suppose P; is corrupted and P> is honest. We will define
simulators for Iy, Il and IT and prove that the view of P; in the real execution of
the protocol IT is computationally indistinguishable from the view generated by the

simulator S.

Simulator for IT;

The simulator Sy, for the protocol II; constructs the entire view that the corrupted
party P; would observe during the execution of I, ensuring that this simulated view
is indistinguishable from the one P; would obtain in a real execution of I1;. The view

consists of:
* x1: The input provided by P;.
* r1: The internal randomness used by P; dur